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ABSTRACT

The aim of this project is to construct a method to track a user’s
face using commodity depth cameras. A precise tracking algorithm
allows a person to easily generate a high quality 3D model of one’s
face. It also can be used to get the pose of a person’s head with
respect to the starting frame of reference. A main obstacle that
prevents one to write a generic tracking algorithm is that different
commodity depth cameras have their own SDKs. Developing a
generic program that works on almost every camera is challenging.
This project aims to solve the above problems by developing an
algorithm that finds the pose of a person’s head from RGBD video
using an open-source framework that can be ported to work on all
widely used commodity depth cameras.

1 MOTIVATION AND OBJECTIVE

Due to the availability of low cost consumer depth cameras, there
has been a lot of research done using 3D image data. These cameras
allow easy recording and analysis of the 3D world. With the recent
advancements in convolutional neural networks and processing
capabilities of computers, the size of having to deal with 3D datasets
is no longer a bottleneck. However the number of well labelled 3D
data-sets are limited. In the case of 3D pose estimation, there are
only two well-labelled reliable datasets available, namely, the BIWI
Kinect Dataset[30] and Nvidia’s SynHead dataset[31]. Also these
datasets suffer from drawbacks, the BIWI Kinect Dataset[30] has
missing frames, so using this as a dataset for algorithms that need se-
quential data is ruled out. The other dataset, Nvidia’s SynHead[31],
suffers from the fact that it is not real-world data. Although well
modelled it cannot perfectly replace real-world data.

My project is to implement an accurate face tracking algorithm,

using an open source framework named Point Cloud Library (PCL)[29].

This will allow the program to be executed with compile time op-
tions to target it towards a particular commodity depth camera.
The most widely used depth cameras are Intel’s RealSense cameras
and Microsot’s Kinect cameras. PCL[29] has compile time flags to
work with both of the cameras. I use a Hough Voting Mechanism
for improved initialization [3], Generalized ICP[2] and an added
check to avoid the drift between previous frames from cascading
on to the later frames.

2 RELATED WORK

Various methods and algorithms have been devised to find the head
pose of the person. These methods have been divided into three
different categories: using features, using pose specific classifiers
and by registration to previous frames or 3D head models. Yi Sun
and Lijun Yin proposed a method to find the face pose by first
finding the corners of the eyes and then the tip of the nose by
using curvature properties of the face and then estimate frontal
view based on that [11], Michael D. Breitenstein used the nose
orientation as an initial estimate to narrow down the pose estimates

and then compared head range images rendered on different similar
poses to arrive that the best pose estimation [12]. Papazov et al.,
introduce a triangular surface patch (TSP) descriptor to match
facial point clouds to a gallery of synthetic faces and to infer their
pose [13]. Although these feature based approaches are are simple,
efficient, they fail when the features cannot be detected, e.g. in
the case of extreme rotations or partial occlusions. Coming to the
classifier-based techniques, Seemann et al., propose a method where
they detect faces in RGB images and estimate the head pose from
the disparity map of a stereo camera using a neural network for
each rotation [14]. Fanelli et al., train random classification and
regression forests with range image patches for head detection
and pose estimation [15]. Tulyakov et al., [16] use cascaded tree
classifiers and achieve higher accuracies than [14]. Classifier-based
techniques require extensive training with large datasets. Also,
classifiers trained on one 3D sensor do not generalize well and the
number of well labelled 3D data available also do not generalize
well.

The other method widely used in pose estimation involves regis-
tering the 3D data to a 3D model using rigid or non-rigid ICP[3,5].
Various methods suggested employ a deformable model fitting to
create person-specific models for head pose estimation. However,
these methods do not work well when the quality of the observed
data has significant noise, involve offline initialization and a lot of
interaction from the users.

To register the reference model to the measured data, ICP and
its variants are often used. However, ICP fails to converge to the
correct solution when it is initialized poorly. To overcome this,
Padeleris et al. employ the stochastic PSO algorithm [29] to register
facial surfaces [17]. However, PSO also suffers from slow and/or
premature convergence to a local optimum.

Face Detection is essential to face pose estimation, a lot of meth-
ods have been proposed to solve this problem [18, 19, 20, 21, 22, 23].
For my project, I assume that the captured frame has a properly
segmented face.

3 MODELS AND ALGORITHMS
3.1 Data Collection

The data collected for this project was using an Intel RealSense
Depth Camera (D435). PCL [29] has a RealSense Grabber routine
that captures the x, y and z co-ordinates of each point in space.
The captured data is organized in the form of a structured data
structure named pcl::point cloud. Every individual entry in this
container of type PointT. This makes it easy to run any algorithm
on the point cloud as all the x, y and z co-ordinates of a point can
be quickly accessed. Point clouds again can be organized or un-
organized. organized point clouds have a structured ordering of
the points captured. The RealSense D435 camera used provides a
structured point cloud. Therefore the entire projects works with
.pcd files and uses algorithms that relies on organized point clouds.



Crata Drata Target
Caollection Upsampding Initislization
Paint Cloud Paint Clowd Registration

Flltering Smoothing egisiatio

Figure 1: Registration Pipeline
Registration Pipeline

This ability to store and access organized point clouds is of extreme
importance for real time applications like point cloud registration,
virtual reality and robotics.

3.2 Point Cloud Filtering

The captured data has a lot of unwanted details of the environment
and noise. In order to throw away all the unnecessary data, a volume
of interest is defined. The near and far values of the x, y and z axis
are determined. After filtering only the face region is left.

Figure 2: Captured point cloud
Captured point cloud

Figure 3: Filtered point cloud
Filtered point cloud

3.3 Point Cloud Smoothing

The filtered point cloud still has noise and a lot of sharp changes
in contours. Since the registration uses an Iterative Closest Point
(ICP) algorithm, having more grippable smooth surface ensures
an easier convergence. In order to do this, we smooth the surface
using Moving Least Squares Algorithm [24]. This gives us a smooth
point cloud. However the obtained point cloud might contain a lot
of holes in it.

3.4 Data Upsampling

In order to fill the holes in the captured point cloud, after smoothing
the curves, Moving Least Square upsampling is employed, followed
by Poission upsampling[25]. Poission upsamping provides a water
tight fit to all the holes in the pipeline, thereby making it easier to
converge to the right solution.

Figure 4: input point cloud

Figure 5: smoothed point cloud

Figure 6: upsampled point cloud



3.5 Target Initialization and Registration

Problem Statement

A point cloud is a data structure P used to represent a collection
of multi-dimensional points peP". In a 3D point cloud, the elements
usually contain the X, Y and the Z co-ordinates. Sometimes point
clouds contains additional details like the local surface normal n or
the curvature x. Given a source cloud p € P and a target point cloud
q € Q, the problem of registration relies on finding correspondences
between P and Q, and estimating a transformation T that, when
applied to P, aligns all pairs of corresponding points peP, geQ. One
fundamental problem of registration is that these correspondences
are usually not known and need to be determined by the registration
algorithm. Given correct correspondences, there are different ways
of computing the optimal transformation with respect to the used
error metric.

Iterative Registration of Closest Points

The algorithm of ICP can be condensed to two steps:
1) Compute correspondences between the two point clouds
2) Compute a transformation that minimizes distance between cor-
responding points

Iteratively repeating these two steps typically results in conver-
gence. Because we are violating the assumption of full overlap, a
maximum matching threshold dy, 4y is set. This threshold accounts
for the fact that some points in the target point cloud will not have
any match in the source point cloud and vice versa. The choice of
dmax represents a tradeoff between convergence and accuracy.

Input:
Two point clouds: P = p; and Q = g;
Starting Transformation Ty

Output:
Correct Transformation T, that aligns the two pointclouds P and Q.

T=T
while not converged do
fori=1toN do
m; = FindClosestPointinP(T.q;)
if [m; — T.bi|| <dmax then

| wi=1
else
| wi=0
end
end
T = argming Y; wi||T.b; — m;]||?

end
Algorithm 1: ICP Algorithm

Point-to-plane

The point-to-plane variant of ICP improves performance by
taking advantage of surface normal information. Originally in-
troduced by Chen and Medioni[26], the technique has come into
widespread use as a more robust and accurate variant of standard
ICP when presented with 2.5D range data. Instead of minimizing

3 (T.bi = my)||? , the point-to-plane algorithm minimizes error
along the surface normal (i.e. the projection of (Th; — m;) onto the
sub-space spanned by the surface normal)

T=Tp
while not converged do
fori=1to N do
m; = FindClosestPointinP(T.b;)
if m; — T.bi|| <dmax then
| wi=1
else
| wi=0
end
end
T = argming 3; wil[n:(T.bi — m;)||*
end

Algorithm 2: Point to Plane Algorithm

Generalized ICP

Generalized-ICP is based on attaching a probabilistic model to the
minimization step on line 11, (T = arg ming Y,; w;||ni(T.b;—m;)||?)
of Alg. 1. The technique keeps the rest of the algorithm unchanged
so as to reduce complexity and maintain speed. Notably, correspon-
dences are still computed with the standard Euclidean distance
rather then a probabilistic measure. This is done to allow for the
use of kd-trees in the look up of closest points and hence main-
tain the principle advantages of ICP over other fully probabilistic
techniques, speed and simplicity.

In order to derive the update step of the Generalized ICP algo-
rithm, let’s start with the assumption that the closest point lookup
has been performed on the two point clouds, A = dj (;, . n} and B =
bi (1,...N) are indexed according to their correspondences. Assume
that all correspondences with ||m; — T.b;|| > dmax have been re-
moved. In the probabilistic model, assume that the existence of an
underlying set of points, A = d; and B = bi, which generate A and
B according to a; ~ N(4, C{‘) and b; ~ N(l;, CP) In this case, C{‘
and Cf are the covarience matrices associated with the measured
points. If we assume perfect corresponding points and the correct
transformation T*, we know that,

bi =T *d; (1

For an arbitrary rigid transformation, T, we define dl(T) =b; —Ta;j,

and consider the distribution from which dlr* is drawn. Since q;
and b; are assumed to be drawn from independent Gaussians,

dF ~ N(b; - (T#)d;, CB + (T » CA(T#)T)) "
dl' = N(0,CB + (T)cA(T)7T)

Now we use MLE to iteratively compute T by setting

T = arg max(l'[,-p(le )
T

T = I ar
arg;nax(Zi] og(p(d?))



3.6 Drift Correction

Initialization using Hough Voting

Although Generalized-ICP is fast and simple, it suffers from a
problem that every existing variant of ICP suffers, i.e., bad initializa-
tion. In order to solve this problem, an initialization using SHOT3D
features [27] is used. Using the Hough Voting scheme described
in [10], we get a set of transformations. For every transformation
that obtains a high score, the average and standard deviation of the
distances from each point int the source point cloud to it’s closest
point in the target point cloud is calculated. Then the transfor-
mation with the least weighted average and standard deviation is
selected. This transformation constitutes the initial transformation.

In order to avoid the drift from previous frames to accumulate
on to the later frames, an additional drift check is included in the
algorithm. Also, a new reference frame named anchor frame is in-
troduced to further reduce the accumulation of drift. Anchor frame
refers to the frame to which the subsequent target Point Clouds
will be registered. The algorithm involves the following steps:

1) Set anchor frame to the first source frame. Also the properly
oriented face is assumed to be seen in the first frame, let’s call this
check frame.

2) Align the current frame to the anchor frame.

3) Check if the angle of rotation from current frame to the check
frame is small. If yes, find the cascaded transformation from the
current frame to the check frame. Check if the angle of rotation
of this transformation is also low. (If there is no drift then the two
angles must be almost the same).

4) Set check frame to the current frame.

5) If the angle of transformation between the current frame to
the anchor frame exceeds a threshold, set the current frame as the
anchor to the subsequent frames.

6) If the angle of rotation from the current from to the anchor
frame exceeds a threshold, set current frame to anchor frame.

Input:

D - Starting frame from which drift check has not been done (check
frame).

P; - Source point cloud. Corresponds to the one observed in the it"
frame.

Q; - Target point cloud. Corresponds to the one observed in the
(i = 1" frame.

A - Anchor frame. Used as the Source Point Cloud for registration.

0; - Angle of Rotation between A and Q;.

a; - Angle of Rotation between the point cloud at time frame i and
the check frame.

T; - Cascaded Rotation that sends the source at any frame i to the
frame of reference of Df h point cloud

D=P,
A= P,
anglesum = 0;
fori=1toN do
0; = findAngleofRotation(A, Q;)
if A > threshold1 then
| A=0Q;
end
a; = findAngleofRotation(D;,Q;)
if a; < threshold2 then
if anglesum > threshold3 then
print("Drift present")

D=0
A=Q;
angle-sum = 0
else
print("No drift")
D=0
angle-sum = 0
end
else
| angle-sum += 6;
end

end
Algorithm 3: Algorithm for Drift Correction

4 FUTURE WORK

The described algorithm tracks the person’s face without a lot of
user interaction and offline processing. It also checks if there is
any drift and prevents it from affecting each and every subsequent
frame. However, it does not attempt to correct the drift present in
the previous frames. Correcting the drift present would make this
algorithm more robust to the drift that occurs over time.
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5 VISUALIZATION OF THE POINT CLOUDS FOR THE FIRST TWO REGISTRATION LOOPS:

Figure 7: Point Cloud Vizualizations - from left, first before registration (rendered without texture), second after registration
(rendered without texture), third before registration (rendered with texture) and fourth after registration (rendered with tex-
ture)

Figure 8: Transformations obtained by Initial Hough Voting

Figure 9: Point Cloud Vizualizations - from left, first before registration (rendered without texture), second after registration
(rendered without texture), third before registration (rendered with texture) and fourth after registration (rendered with tex-
ture)

Figure 10: Transformations obtained by Initial Hough Voting



6 VISUALIZATION OF THE POINT CLOUDS FOR THE FIRST THREE DRIFT CORRECTION
ITERATIONS:

Figure 11: Point Cloud captures for the first loop of drift correction (frames 1,...,10,104,129,...,138 are shown)



Figure 12: Point Cloud captures for the second loop of drift correction (frames 139,...,150,229,...,236 are shown)



Figure 13: Point Cloud captures for the third loop of drift correction (frames 290,...,298,364,479,...,488 are shown)



7 VISUALIZATION OF THE REGISTERED POINT CLOUD WITH DRIFT CORRECTION:

Figure 14: Registered Point Cloud using algorithm with drift correction.

Figure 15: Registered Point Clouds from frames 0 to 138 using algorithm with drift correction.

Figure 16: Registered Point Clouds from frames 139 to 236 using algorithm with drift correction.



Figure 17: Registered Point Clouds from frames 290 to 488 using algorithm with drift correction.

Figure 18: Registered Point Cloud using algorithm without drift correction.



Figure 19: Sample Frames of the Pose Estimated. From left, Captured Point Cloud(rendered without texture), Captured Point
Cloud(rendered with texture) and Finally Estimated Pose (small axis represents the world co-ordinate systems and the larger
one the calculated face pose)




Figure 20: Sample Frames of the Pose Estimated. From left, Captured Point Cloud(rendered without texture), Captured Point
Cloud(rendered with texture) and Finally Estimated Pose (small axis represents the world co-ordinate systems and the larger
one the calculated face pose)




Figure 21: Sample Frames of the Pose Estimated. From left, Captured Point Cloud(rendered without texture), Captured Point
Cloud(rendered with texture) and Finally Estimated Pose (small axis represents the world co-ordinate systems and the larger
one the calculated face pose)
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